Part Number Hot Search : 
MN158418 74VHC164 PEMB4 P11NK40 FM107 PEMB4 CSD2410 T1013DH
Product Description
Full Text Search
 

To Download TK11230MBX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TK112xx
VOLTAGE REGULATOR WITH ON/OFF SWITCH FEATURES
s s s s s s s Low Dropout Voltage CMOS/TTL Compatible ON/OFF Switch Very Low Standby Current 180 A (ON, No Load) Internal Thermal Shutdown Short Circuit Protection Very Low (0.1 A) Current in OFF Mode Low Noise with External Bypass Capacitor
APPLICATIONS
s s s s s s s s s Battery Powered Systems Cellular Telephones Pagers Personal Communications Equipment Portable Instrumentation Portable Consumer Equipment Radio Control Systems Toys Low Voltage Systems
DESCRIPTION
The TK112XX is a low power, linear regulator with a builtin electronic switch. The internal electronic switch can be controlled by TTL or CMOS logic levels. The device is in the ON state when the control pin is pulled to a high logic level. A pin for a bypass capacitor is provided, which connects to the internal circuitry, to lower the overall output noise level. An internal PNP pass-transistor is used in order to achieve low dropout voltage (typically 100 mV at 30 mA load current). The device has very low quiescent current (180 A) in the ON mode with no load and 1 mA with 30 mA load. The quiescent current is typically 2.5 mA at 60 mA load. When the device is in standby mode (VCONT = 0), the quiescent current is typically 100 nA. An internal thermal shutdown circuit limits the junction temperature to below 150 C. The load current is internally monitored and the device will shut down in the presence of a short circuit at the output.
TK112XXM
CONTROL 1
P50
6 VIN 5 4
TK112
GND
2
GND VO
M PO
BYPASS 3
BLOCK DIAGRAM
VIN CONTROL
6 1
S
S
S
S
S
4
VO
THERMAL PROTECTION
S
ORDERING INFORMATION
S
S
-
S
+ -
S
S
TK112
Voltage Code
M
S
+
Tape/Reel Code
S
S
S
BANDGAP REFERENCE
S S S S S
2,5 GND
TK112xx
VOLTAGE CODE
27 = 2.75 V 30 = 3.0 V 32 = 3.25 V 35 = 3.5 V 40 = 4.0 V 45 = 4.5 V 47 = 4.75 V 50 = 5.0 V
TAPE/REEL CODE
BX : Bulk/Bag TL : Tape Left
3
NOISE BYPASS
January, 1996 TOKO, Inc.
1-3-96
Page 1
TK112xx
ABSOLUTE MAXIMUM RATINGS
Supply Voltage ......................................................... 16 V Output Current .................................................... 220 mA Power Dissipation (Note 1) ................................ 400 mW Storage Temperature Range ................... -55 to +150 C Operating Temperature Range ...................-30 to +80 C Lead Soldering Temp. (10 sec.) ............................ 240 C Junction Temperature ........................................... 150 C
TK11227 ELECTRICAL CHARACTERISTICS
Test conditions: TA = 25 C, VIN = 3.8 V, unless otherwise specified. SYMBOL V IN IIN IINS VO V DROP IO IOR Line Reg Load Reg RR VO/TA V NO V REF PARAMETER Supply Voltage Range Supply Current Standby Current Output Voltage Dropout Voltage Output Current Recommended Output Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient Output Noise Voltage Noise Bypass Terminal Voltage V IN = 3.25 8.25 V IO = 5 mA 60 mA IO = 5 mA 100 mA 100 mV(rms), f = 400 Hz, IO = 10 mA IO = 10 mA -25 C TA + 75 C 10 Hz < f < 100 kHz, IO = 30 mA, Cp = 0.01 F 3.0 30 80 60 0.15 30 1.25 IO = 0 mA, Except ICONT V IN = 8 V, Output off IO = 30 mA IO = 60 mA Note 3 150 2.66 2.75 0.18 170 130 20 60 150 TEST CONDITIONS MIN 1.8 170 TYP MAX 15 350 0.1 2.84 0.3 UNITS V A A V V mA mA mV mV mV dB mV/ C V(rms) V
Control Terminal Specification ICONT V CONT tr
Note 1:
Control Current Control Voltage Output Rise Time Off On
Output on, V CONT = 2.4 V Output on Output off IO = 30 mA, VCONT = 0 2.4 V 2.4
14
40 0.6
A V V ms
0.3
Power dissipation must be derated at rate of 1.6 mW/C for operation above 25 C . Maximum power dissipation = 400 mW (When mounted as recommended), and 200 mW in free air. Note 2: Output side capacitor should have low ESR at low temperatures if used below 0 C. Note 3: IO (Output Current) is the measured current when the output voltage drops 0.3 V with respect to VO at IO = 30 mA. Note 4: This measurement (pulse measurement) is with a constant T J. The output change due to temperature change is not included.
Page 2
1-3-96
January, 1996 TOKO, Inc.
TK112xx
TK11230 ELECTRICAL CHARACTERISTICS
Test conditions: TA = 25 C, VIN = 4 V, unless otherwise specified. SYMBOL VIN IIN IINS VO VDROP IO IOR Line Reg Load Reg RR VO/TA VNO VREF PARAMETER Supply Voltage Range Supply Current Standby Current Output Voltage Dropout Voltage Output Current Recommended Output Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient Output Noise Voltage Noise Bypass Terminal Voltage VIN = 3.5 8.5 V IO = 5 mA 60 mA IO = 5 mA 100 mA 100 mV(rms), f = 400 Hz, IO = 10 IO = 10 mA -25 C TA + 75 C 10 Hz < f < 100 kHz, IO = 30 mA, Cp = 0.01 F 3.0 30 80 60.0 0.15 30 1.25 IO = 0 mA, Except ICONT VIN = 8 V, Output off IO = 30 mA IO = 60 mA Note 3 150 2.90 3.00 0.18 170 130.0 20 60 150 TEST CONDITIONS MIN 1.8 170 TYP MAX 15 350 0.1 3.10 0.3 UNITS V A A V V mA mA mV mV mV dB mV/ C V(rms) V
Control Terminal Specification ICONT VCONT tr
Note 1: Note 2: Note 3: Note 4:
Control Current Control Voltage Output Rise Time Off On
Output on, VCONT = 2.4 V Output on Output off IO = 30 mA, VCONT = 0 2.4 V 2.4
14
40 0.6
A V V ms
0.3
Power dissipation must be derated at rate of 1.6 mW/C for operation above 25 C . Maximum power dissipation = 400 mW (When mounted as recommended), and 200 mW in free air. Output side capacitor should have low ESR at low temperatures if used below 0 C. IO (Output Current) is the measured current when the output voltage drops 0.3 V with respect to VO at IO = 30 mA. This measurement (pulse measurement) is with a constant TJ. The output change due to temperature change is not included.
January, 1996 TOKO, Inc.
1-3-96
Page 3
TK112xx
TK11232 ELECTRICAL CHARACTERISTICS
Test conditions: TA = 25 C, VIN = 4.3 V, unless otherwise specified. SYMBOL VIN IIN IINS VO VDROP IO IOR Line Reg Load Reg RR VO/TA VNO VREF PARAMETER Supply Voltage Range Supply Current Standby Current Output Voltage Dropout Voltage Output Current Recommended Output Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient Output Noise Voltage Noise Bypass Terminal Voltage VIN = 3.75 8.75 V IO = 5 mA 60 mA IO = 5 mA 100 mA 100 mV(rms), f = 400 Hz, IO = 10 mA IO = 10 mA -25 C TA + 75 C 10 Hz < f < 100 kHz, IO = 30 mA, Cp = 0.01 F 3.0 30 80 60.0 0.15 30 1.25 IO = 0 mA, Except ICONT VIN = 8 V, Output off IO = 30 mA IO = 60 mA Note 3 150 3.15 3.25 0.18 170 130 20 60 150 TEST CONDITIONS MIN 1.8 170 TYP MAX 15 350 0.1 3.35 0.3 UNITS V A A V V mA mA mV mV mV dB mV/ C V(rms) V
Control Terminal Specification ICONT VCONT tr
Note 1: Note 2: Note 3: Note 4:
Control Current Control Voltage Output Rise Time Off On
Output on, VCONT = 2.4 V Output on Output off IO = 30 mA, VCONT = 0 2.4 V 2.4
14
40 0.6
A V V ms
0.3
Power dissipation must be derated at rate of 1.6 mW/C for operation above 25 C . Maximum power dissipation = 400 mW (When mounted as recommended), and 200 mW in free air. Output side capacitor should have low ESR at low temperatures if used below 0 C. IO (Output Current) is the measured current when the output voltage drops 0.3 V with respect to VO at IO = 30 mA. This measurement (pulse measurement) is with a constant TJ. The output change due to temperature change is not included.
Page 4
1-3-96
January, 1996 TOKO, Inc.
TK112xx
TK11235 ELECTRICAL CHARACTERISTICS
Test conditions: TA = 25 C, VIN = 4.5 V, unless otherwise specified. SYMBOL V IN IIN IINS VO V DROP IO IOR Line Reg Load Reg RR VO/TA V NO V REF PARAMETER Supply Voltage Range Supply Current Standby Current Output Voltage Dropout Voltage Output Current Recommended Output Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient Output Noise Voltage Noise Bypass Terminal Voltage V IN = 4 9 V IO = 5 mA 60 mA IO = 5 mA 100 mA 100 mV(rms), f = 400 Hz, IO = 10 mA IO = 10 mA -25 C TA + 75 C 10 Hz < f < 100 kHz, IO = 30 mA, Cp = 0.01 F 3.0 30 80 60.0 0.15 35 1.25 IO = 0 mA, Except ICONT V IN = 8 V, Output off IO = 30 mA IO = 60 mA Note 3 150 3.39 3.5 0.18 170 130 20 60 150 TEST CONDITIONS MIN 1.8 170 TYP MAX 15 350 0.1 3.61 0.3 UNITS V A A V V mA mA mV mV mV dB mV/ C V(rms) V
Control Terminal Specification ICONT V CONT tr
Note 1: Note 2: Note 3: Note 4:
Control Current Control Voltage Output Rise Time Off On
Output on, V CONT = 2.4 V Output on Output off IO = 30 mA, VCONT = 0 2.4 V 2.4
14
40 0.6
A V V ms
0.3
Power dissipation must be derated at rate of 1.6 mW/C for operation above 25 C. Maximum power dissipation = 400 mW (When mounted as recommended), and 200 mW in free air. Output side capacitor should have low ESR at low temperatures if used below 0 C. IO (Output Current) is the measured current when the output voltage drops 0.3 V with respect to VO at IO = 30 mA. This measurement (pulse measurement) is with a constant TJ. The output change due to temperature change is not included.
January, 1996 TOKO, Inc.
1-3-96
Page 5
TK112xx
TK11240 ELECTRICAL CHARACTERISTICS
Test conditions: TA = 25 C, VIN = 5 V, unless otherwise specified. SYMBOL V IN IIN IINS VO V DROP IO IOR Line Reg Load Reg RR V O/TA V NO V REF PARAMETER Supply Voltage Range Supply Current Standby Current Output Voltage Dropout Voltage Output Current Recommended Output Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient Output Noise Voltage Noise Bypass Terminal Voltage V IN = 4.5 9.5 V IO = 5 mA 60 mA IO = 5 mA 100 mA 100 mV(rms), f = 400 Hz, IO = 10 mA IO = 10 mA -25 C TA + 75 C 10 Hz < f < 100 kHz, IO = 30 mA, Cp = 0.01 F 3.0 30 80 60 0.2 40 1.25 IO = 0 mA, Except ICONT V IN = 8 V, Output off IO = 30 mA IO = 60 mA Note 3 150 3.88 4.0 0.18 170 130 20 60 150 TEST CONDITIONS MIN 1.8 170 TYP MAX 15 350 0.1 4.12 0.3 UNITS V A A V V mA mA mV mV mV dB mV/ C V(rms) V
Control Terminal Specification ICONT V CONT tr
Note 1: Note 2: Note 3: Note 4:
Control Current Control Voltage Output Rise Time Off On
Output on, V CONT = 2.4 V Output on Output off IO = 30 mA, VCONT = 0 2.4 V 2.4
14
40 0.6
A V V ms
0.3
Power dissipation must be derated at rate of 1.6 mW/C for operation above 25 C . Maximum power dissipation = 400 mW (When mounted as recommended), and 200 mW in free air. Output side capacitor should have low ESR at low temperatures if used below 0 C. IO (Output Current) is the measured current when the output voltage drops 0.3 V with respect to VO at IO = 30 mA. This measurement (pulse measurement) is with a constant TJ. The output change due to temperature change is not included.
Page 6
1-3-96
January, 1996 TOKO, Inc.
TK112xx
TK11245 ELECTRICAL CHARACTERISTICS
Test conditions: TA = 25 C, VIN = 5.5 V, unless otherwise specified. SYMBOL VIN IIN IINS VO VDROP IO IOR Line Reg Load Reg RR V O/TA VNO VREF PARAMETER Supply Voltage Range Supply Current Standby Current Output Voltage Dropout Voltage Output Current Recommended Output Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient Output Noise Voltage Noise Bypass Terminal Voltage VIN = 5 10 V IO = 5 mA 60 mA IO = 5 mA 100 mA 100 mV(rms), f = 400 Hz, IO = 10 mA IO = 10 mA -25 C TA + 75 C 10 Hz < f < 100 kHz, IO = 30 mA, Cp = 0.01 F 3.0 30 80 60 0.25 45 1.25 IO = 0 mA, Except ICONT VIN = 8 V, Output off IO = 30 mA IO = 60 mA Note 3 150 4.37 4.5 0.18 170 130 20 60 150 TEST CONDITIONS MIN 1.8 170 TYP MAX 15 350 0.1 4.63 0.3 UNITS V A A V V mA mA mV mV mV dB mV/ C V(rms) V
Control Terminal Specification ICONT VCONT tr
Note 1: Note 2: Note 3: Note 4:
Control Current Control Voltage Output Rise Time Off On
Output on, VCONT = 2.4 V Output on Output off IO = 30 mA, VCONT = 0 2.4 V 2.4
14
40 0.6
A V V ms
0.3
Power dissipation must be derated at rate of 1.6 mW/C for operation above 25 C . Maximum power dissipation = 400 mW (When mounted as recommended), and 200 mW in free air. Output side capacitor should have low ESR at low temperatures if used below 0 C. IO (Output Current) is the measured current when the output voltage drops 0.3 V with respect to VO at IO = 30 mA. This measurement (pulse measurement) is with a constant TJ. The output change due to temperature change is not included.
January, 1996 TOKO, Inc.
1-3-96
Page 7
TK112xx
TK11247 ELECTRICAL CHARACTERISTICS
Test conditions: TA = 25 C, VIN = 5.7 V, unless otherwise specified. SYMBOL V IN IIN IINS VO V DROP IO IOR Line Reg Load Reg RR VO/TA V NO V REF PARAMETER Supply Voltage Range Supply Current Standby Current Output Voltage Dropout Voltage Output Current Recommended Output Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient Output Noise Voltage Noise Bypass Terminal Voltage V IN = 5.25 10.25 V IO = 5 mA 60 mA IO = 5 mA 100 mA 100 mV(rms), f = 400 Hz, IO = 10 mA IO = 10 mA -25 C TA + 75 C 10 Hz < f < 100 kHz, IO = 30 mA, Cp = 0.01 F 3.0 30 80 60 0.4 45 1.25 IO = 0 mA, Except ICONT V IN = 8 V, Output off IO = 30 mA IO = 60 mA Note 3 150 4.61 4.75 0.18 170 130 20 60 150 TEST CONDITIONS MIN 1.8 170 TYP MAX 15 350 0.1 4.89 0.3 UNITS V A A V V mA mA mV mV mV dB mV/ C V(rms) V
Control Terminal Specification ICONT V CONT tr
Note 1:
Control Current Control Voltage Output Rise Time Off On
Output on, V CONT = 2.4 V Output on Output off IO = 30 mA, VCONT = 0 2.4 V 2.4
14
40 0.6
A V V ms
0.3
Power dissipation must be derated at rate of 1.6 mW/C for operation above 25 C. Maximum power dissipation = 400 mW (When mounted as recommended), and 200 mW in free air. Note 2: Output side capacitor should have low ESR at low temperatures if used below 0 C. Note 3: IO (Output Current) is the measured current when the output voltage drops 0.3 V with respect to VO at IO = 30 mA. Note 4: This measurement (pulse measurement) is with a constant T J. The output change due to temperature change is not included.
Page 8
1-3-96
January, 1996 TOKO, Inc.
TK112xx
TK11250 ELECTRICAL CHARACTERISTICS
Test conditions: TA = 25 C, VIN = 6 V, unless otherwise specified. SYMBOL VIN IIN IINS VO VDROP IO IOR Line Reg Load Reg RR VO/T A VNO VREF PARAMETER Supply Voltage Range Supply Current Standby Current Output Voltage Dropout Voltage Output Current Recommended Output Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient Output Noise Voltage Noise Bypass Terminal Voltage VIN = 5.5 10.5 V IO = 5 mA 60 mA IO = 5 mA 100 mA 100 mV(rms), f = 400 Hz, IO = 10 mA IO = 10 mA -25 C TA + 75 C 10 Hz < f < 100 kHz, IO = 30 mA, Cp = 0.01 F 3.0 30 80 60 0.4 50 1.25 IO = 0 mA, Except ICONT VIN = 8 V, Output off IO = 30 mA IO = 60 mA Note 3 150 4.85 5.0 0.18 170 130 20 60 150 TEST CONDITIONS MIN 1.8 160 TYP MAX 15 350 0.1 515 0.3 UNITS V A A V V mA mA mV mV mV dB mV/ C V(rms) V
Control Terminal Specification ICONT VCONT tr
Note 1:
Control Current Control Voltage Output Rise Time Off On
Output on, VCONT = 2.4 V Output on Output off IO = 30 mA, VCONT = 0 2.4 V 2.4
14
40 0.6
A V V ms
0.3
Power dissipation must be derated at rate of 1.6 mW/C for operation above 25 C. Maximum power dissipation = 400 mW (When mounted as recommended), and 200 mW in free air. Note 2: Output side capacitor should have low ESR at low temperatures if used below 0 C. Note 3: IO (Output Current) is the measured current when the output voltage drops 0.3 V with respect to VO at IO = 30 mA. Note 4: This measurement (pulse measurement) is with a constant T J. The output change due to temperature change is not included.
January, 1996 TOKO, Inc.
1-3-96
Page 9
TK112xx
TEST CIRCUIT
VIN
+ _
A
S
S
S
VO IOUT V
+
1 F
VIN 6 5 4
VOUT
+
10 F
1 CONT CONT
S
2
3 Noise Bypass .01 F
A ICONT
+ _
V
NOTE: CONNECT PINS 2 AND 5 TO GND FOR MAXIMUM HEAT CONDUCTION.
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25 C unless otherwise specified.
DROPOUT VOLTAGE vs. LOAD CURRENT
0.5 TA = 25 C 5 4 ICONT (A) VO (V)
OUTPUT VOLTAGE vs. SHORT CIRCUIT CURRENT
TA = 25 C TK11250 VIN = VO + 1
CONTROL TERMINAL CIRCUIT CURRENT vs. CONTROL TERMINAL VOLTAGE
50 40 TA= 25 C RCONT = 0
VDROP (V)
0.3
3 TK11230 2
30
RCONT = 0
0.4
75 K 150 K 300 K
VO 75 K
0.2 TK11250 0.1
TK11220 1 0
20 150 K 10 300 K 0
0 0 50 IO (mA) 100
TK112XX* TPC01
0
100 IO (mA)
200
TK112XX * TPC02
0
1
2 3 VCONT (V)
4
5
TK112XX * TPC03
QUIESCENT CURRENT vs. INPUT VOLTAGE
200 TA = 25 C 0
RIPPLE REJECTION
TA = 25 C
LINE TRANSIENT RESPONSE
TA = 25 C DV = 1 V
ICONT (pA)
100
LEVEL (dB)
VCC
-50 VO 10 mV/DIV
0 0 10 VCC (V) 20
TK112XX * TPC04
-100 100
1k HZ
10k
100k
TK112XX * TPC05
50 s/DIV
TK112XX * TPC06
Page 10
1-3-96
January, 1996 TOKO, Inc.
TK112xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 C unless otherwise specified.
SHUTDOWN CONTROL (OFF-ON)
TA = 25 C
LOAD TRANSIENT RESPONSE
IO = 60 mA TA = 25 C
NOISE LEVEL vs. BYPASS CAPACITOR (pF)
TA = 25 C IO = 60 mA 200 NOISE (V) TK11250 CL = 3.3 F CL = 10 F TK11220 100 CL = 10 F CL = 3.3 F
SD IO
IO = 0 mA VO VO 10 mV/DIV CL=3.3 F
CP=.001 CP=.01 CP=.1 CP=.001 CP=.01 CP=.1
CL=10 F
150
50
50 s/DIV
TK12XX * TPC07
50 s/DIV
TK112XX * TPC08
0 1 pF 10 pF 100 pF Cp .001F
.01 F
.1 F
TK112XX * TPC09
QUIESCENT CURRENT vs. TEMPERATURE
5 QUIESCENT CURRENT (mA) VIN = VO +1V 500
DROPOUT VOLTAGE vs. TEMPERATURE
50
CONTROL PIN CURRENT vs. TEMPERATURE
VCONT = 5 V
CONTROL PIN CURRENT (A)
DROP OUT VOLTAGE (mV)
IO = 60 mA
400
40
300
30
2.5 IO = 30 mA
200 IO = 60 mA 100 IO = 30 mA
20 VCONT = 2.4 V
10 0 -50
0 -50
0 TA (C)
50
100
TK112XX * TPC10
0 -50
0 TA (C)
50
100
TK112XX * TPC11
0 TA (C)
50
100
TK112XX * TPC12
CONTROL PIN VOLTAGE vs. TEMPERATURE
2.0 200
OUTPUT CURRENT vs. TEMPERATURE
CONTROL PIN VOLTAGE (V)
OUTPUT CURRENT (mA)
180
160 140
1.0
120 0 -50
0 TA (C)
50
100
TK112XX * TPC13
-50
0 TA (C)
1-3-96
50
100
TK112XX * TPC14
January, 1996 TOKO, Inc.
Page 11
TK112xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11227
LOAD REGULATION 10 2.95 2.75
TA = 25 C unless otherwise specified.
QUIESCENT CURRENT vs. OUTPUT CURRENT
OUTPUT VOLTAGE vs. INPUT VOLTAGE 2.85
IQ (mA)
VO (V)
VO (V)
2.65 2.55 2.45
2.75
5
2.55 0 0 50 IO (mA) 100
227-1
2.35 0 50 IO (mA) 100
227-2
0
10 VIN (V)
20
227-3
INPUT CURRENT (NO LOAD) vs. INPUT VOLTAGE 2
OUTPUT VOLTAGE vs. INPUT VOLTAGE
2.80
OUTPUT VOLTAGE vs. TEMPERATURE
2.75
IO = 0 mA 30 mA 60 mA
VO (V)
2.75 60 mA IO = 30 mA
IIN (mA)
1
VO (V)
2.25 90 mA
2.70 0
1.75
0 10 VIN (V) 20
227-4
2.25
2.75 VIN (V)
3.25
227-5
-50
0 TA(C)
50
100
227-6
TK11230
OUTPUT VOLTAGE vs. OUTPUT CURRENT
TA = 25 C 3.2 VIN = 3.1 V 10
QUIESCENT CURRENT vs. LOAD CURRENT
TA = 25 C VIN = 4.0 V 3.1
OUTPUT VOLTAGE vs. INPUT VOLTAGE
TA = 25 C IO = 0 mA
3.0 IQ (mA)
VO (V)
3.0
5
VO (V)
2.9
2.8 2.7 2.8 0 0 50 IO (mA) 100
TK112XX * TPC27
2.6 0 50 IO (mA)
1-3-96
100
TK112XX * TPC28
0
10 VIN (V)
20
TK112XX* TPC29
Page 12
January, 1996 TOKO, Inc.
TK112xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11230 (CONT.)
INPUT CURRENT vs. INPUT VOLTAGE
2 TA = 25 C IO = 0 mA 3.0 IO = 0 mA IO = 30 mA IIN (A) VO (V) IO = 60 mA IO = 90 mA VO (V)
TA = 25 C unless otherwise specified.
OUTPUT VOLTAGE vs. INPUT VOLTAGE
TA = 25 C
OUTPUT VOLTAGE vs. TEMPERATURE
3.05 VIN = 4.0 V
IO = 30 mA IO = 60 mA
1
2.5
3.0
0 0 10 VIN (V) 20
TK112XX * TPC30
2.0 2.5 3.0 VIN (V) 3.5
TK112XX * TPC31
2.95 -50
0 TA (C)
50
80
TK112XX * TPC32
TK11232
LOAD REGULATION 3.45 10 3.3 3.2 QUIESCENT CURRENT vs. OUTPUT CURRENT OUTPUT VOLTAGE vs. INPUT VOLTAGE
IQ (mA)
VO (V)
3.25
VO (V)
5
3.1 3.0
3.0 0 0 50 IO (mA) 100
232-1
2.9 0 50 IO (mA) 100
232-2
0
10 VIN (V)
20
232-3
INPUT CURRENT (NO LOAD) vs. INPUT VOLTAGE 2
OUTPUT VOLTAGE vs. SUPPLY VOLTAGE
OUTPUT VOLTAGE vs. TEMPERATURE 3.30
3.2 IO = 0 mA
IIN (mA)
VO (V)
3.0 2.8 30 mA 2.6 2.4
60 mA
VO (V)
IO = 30 mA 3.25 60 mA
1
90 mA
3.20 3.2 VIN (V) 3.7
232-5
0
0
10 VIN (V)
20
232-4
2.8
-50
0 TA (C)
50
100
232-6
January, 1996 TOKO, Inc.
1-3-96
Page 13
TK112xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11235
LOAD REGULATION 10 3.7 3.5
TA = 25 C unless otherwise specified.
QUIESCENT CURRENT vs. OUTPUT CURRENT
OUTPUT VOLTAGE vs. INPUT VOLTAGE 3.6
VO (V)
IQ (mA)
3.5
5
VO (V)
3.4 3.3 3.2
3.3 0 0 50 IO (mA) 100
235-1
3.1 0 50 IO (mA) 100
235-2
0
10 VIN (V)
20
235-3
INPUT CURRENT (NO LOAD vs. SUPPLY VOLTAGE 2 3.5
OUTPUT VOLTAGE vs. INPUT VOLTAGE IO = 0 mA 30 mA 60 mA
3.55
OUTPUT VOLTAGE vs. TEMPERATURE
VO (V)
IIN (mA)
VO (V)
3.5
IO = 30 mA 60 mA
1
3.0 90 mA
3.45 0 0 10 VIN (V) 20
235-4
2.5 3.0
3.5 VIN (V)
4.0
235-5
-50
0 TA (C)
50
100
235-6
TK11240
QUIESCENT CURRENT vs. OUTPUT CURRENT 10 4.2 4.0 4.1 OUTPUT VOLTAGE vs. INPUT VOLTAGE
LOAD REGULATION
IQ (mA)
VO (V)
VO (V)
3.9 3.8 3.7
4.0
5
3.8 0 0 50 IO (mA) 100
240-1
3.6 0 50 IO (mA) 100
240-2
0
10 VIN (V)
20
240-3
Page 14
1-3-96
January, 1996 TOKO, Inc.
TK112xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11240 (CONT.)
SUPPLY VOLTAGE vs. INPUT CURRENT (NO LOAD) 2 4.0
TA = 25 C unless otherwise specified.
SUPPLY VOLTAGE vs. OUTPUT VOLTAGE IO = 0 mA 30 mA 60 mA
4.05
TEMPERATURE vs. OUTPUT VOLTAGE
ICC (mA)
VO (V)
VO (V)
4.0
IO = 30 mA 60 mA
1
3.5
90 mA
3.95 0 0 10 VCC (V) 20
240-4
3.0 3.5
4.0 VCC (V)
4.5
240-5
-50
0 TA(C)
50
100
240-6
TK11245
LOAD REGULATION 4.7
10
QUIESCENT CURRENT vs. OUTPUT CURRENT
OUTPUT VOLTAGE vs. INPUT VOLTAGE 4.6 4.5
IQ (mA)
VO (V)
4.5
VO (V)
0 50 IO (mA) 100
245-2
4.4 4.3
5
4.3
0
4.2 4.1 0 10 VIN (V) 20
245-3
0
50 IO (mA)
100
245-1
INPUT CURRENT (NO LOAD) vs. INPUT VOLTAGE 2 4.5
OUTPUT VOLTAGE vs. INPUT VOLTAGE 4.55 IO = 0 mA 30 mA
OUTPUT VOLTAGE vs. TEMPERATURE
60 mA
IIN (mA)
IO = 30 mA
VO (V)
VO (V)
4.5 60 mA
1
4.0
90 mA
4.45 0 0 10 VIN (V) 20
245-4
3.5 4.0
4.5 VIN (V)
5.0
245-5
-50
0 TA (C)
50
100
245-6
January, 1996 TOKO, Inc.
1-3-96
Page 15
TK112xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11247
LOAD REGULATION 4.95 10
TA = 25 C unless otherwise specified.
QUIESCENT CURRENT vs. OUTPUT CURRENT
OUTPUT VOLTAGEvs. SUPPLY VOLTAGE 4.85 4.75
IQ (mA)
VO (V)
4.75
VO (V)
4.65 4.55
5
4.55 0 0 50 IO (mA) 100
247-2
4.45 4.35 0 10 VIN (V) 20
247-3
0
50 IO (mA)
100
247-1
INPUT CURRENT (NO LOAD) vs. INPUT VOLTAGE 2 4.75
OUTPUT VOLTAGE vs. INPUT VOLTAGE IO = 0 mA 30 mA
4.80
OUTPUT VOLTAGE vs . TEMPERATURE
IIN (mA)
60 mA
IO = 30 mA
VO (V)
VO (V)
4.75 60 mA
1
4.25 90 mA
4.70 0 0 10 VIN (V) 20
247-4
3.75
4.25
4.75 VIN (V)
5.25
247-5
-50
0 TA (C)
50
100
247-6
TK11250
OUTPUT VOLTAGE vs. OUTPUT CURRENT
TA = 25 C VIN = 6.0 V 10
QUIESCENT CURRENT vs. LOAD CURRENT
TA = 25 C VIN = 6.0 V 5.1
OUTPUT VOLTAGE vs. INPUT VOLTAGE
TA = 25 C IO = 0 mA
5.2
5.0 IQ (mA) VO (V)
5.0
5
VO (V) 0 50 IO (mA)
1-3-96
4.9
4.8 4.7 4.8 0 0 50 IO (mA) 100
TK112XX * TPC33
4.6 100
TK112XX * TPC34
0
10 VIN (V)
20
TK112XX* TPC35
Page 16
January, 1996 TOKO, Inc.
TK112xx
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TK11250 (CONT.)
INPUT CURRENT vs. INPUT VOLTAGE
2 TA = 25 C IO = 0 mA 5.0 IO = 0 mA IO = 30 mA IIN (A) VO (V) VO (V) IO = 60 mA IO = 90 mA IO = 30 mA
TA = 25 C unless otherwise specified.
OUTPUT VOLTAGE vs. INPUT VOLTAGE
TA = 25 C
OUTPUT VOLTAGE vs. TEMPERATURE
5.05 VIN = 6.0 V
1
4.5
5.0
IO = 60 mA
0 0 10 VIN (V) 20
TK112XX * TPC36
4.0 4.5 5.0 VIN ( V) 5.5
TK112XX * TPC37
4.95 -50
0 TA ( C)
50
80
TK112XX * TPC38
DEFINITION AND EXPLANATION OF TECHNICAL TERMS
LINE REGULATION (LINE REG) Line regulation is the relationship between change in output voltage due to a change in input voltage. LOAD REGULATION (LOAD REG) Load regulation is the relationship between change in output voltage due to a change in load current. DROP OUT VOLTAGE (VDROP ) This is a measure of how well the regulator performs as the input voltage decreases. The smaller the number, the further the input voltage can decrease before regulation problems occur. Nominal output voltage is first measured when VIN = VO + 1 at a chosen load current. When the output voltage has dropped 100 mV from the nominal, VIN - VO is the dropout voltage. This voltage is affected by load current and junction temperature. OUTPUT NOISE VOLTAGE This is the effective AC voltage that occurs on the output voltage under the condition where the input noise is low and with a given load, filter capacitor, and frequency range. THERMAL PROTECTION This is an internal feature which turns the regulator off when the junction temperature rises above 150 C. After the regulator turns off, the temperature drops and the regulator January, 1996 TOKO, Inc. output turns back on. Under certain conditions, the output waveform may appear to be an oscillation as the output turns off and on and back again in succession. PACKAGE POWER DISSIPATION (PD) This is the power dissipation level at which the thermal sensor is activated. The IC contains an internal thermal sensor which monitors the junction temperature. When the junction temperature exceeds the monitor threshold of 150 C, the IC is shutdown. The junction temperature rises as the difference between the input power (VIN X IIN) and the output power (VO X IO) increases. The rate of temperature rise is greatly affected by the mounting pad configuration on the PCB, the board material, and the ambient temperature. When the IC mounting has good thermal conductivity, the junction temperature will be low even if the power dissipation is great. When mounted onthe recommended mounting pad, the power dissipation of the SOT23L is increased to 400 mW. For operation at ambient temperatures over 25 C, the power dissipation of the SOT23L device should be derated at 3.2 mW/C. To determine the power dissipation for shutdown when mounted, attach the device on the actual PCB and deliberately increase the output current (or raise the input voltage) until the thermal protection circuit is activated. Calculate the power dissipation of the device by subtracting the output power from the input power. These measurements should allow for the ambient temperature of the PCB. The value obtained from PD/(150 C - T A) is the derating factor. The PCB mounting pad should provide maximum thermal conductivity in order to maintain low device temperatures. As a general rule, the
1-3-96
Page 17
TK112xx
DEFINITION AND EXPLANATION OF TECHNICAL TERMS (CONT.)
lower the temperature, the better the reliability of the device. The Thermal resistance when mounted is expressed as follows: TJ = 0JA X PD + TA For Toko ICs, the internal limit for junction temperature is 150 C. If the ambient temperature, TA is 25 C, then: 150 C = 0JA X PD + 25 C 0JA X PD = 125 C 0JA = 125 C/ PD PD is the value when the thermal sensor is activated. A simple way to determine PD is to calculate VIN X IIN when the output side is shorted. Input current gradually falls as temperature rises. You should use the value when thermal equilibrium is reached. The range of currents usable can also be found from the graph below.
(mW) PD 3
INPUT/OUTPUT DECOUPLING CAPACITOR CONSIDERATIONS Voltage regulators require input and output decoupling capacitors. The required value of these capacitors vary with application. Capacitors made by different manufacturers can have different characteristics, particularly with regard to high frequencies and equivalent resistance (ESR) over temperature. The type of capacitor is also important. For example, a 5.6 F aluminum electrolytic may be required for a certain application. If a tantalum capacitor is used, a lower value of 3.3 F would be adequate. It is important to consider the temperature characteristics of the decoupling capacitors. While Toko regulators are designed to operate as low as -30 C, many capacitors will not operate properly at this temperature. The capacitance of aluminum electrolytic capacitors may decrease to 0 at low temperatures. This may cause oscillation on the output of the regulator since some capacitance is required to guarantee stability. Thus, it is important to consider the characteristics of the capacitor over temperature when selection decoupling capacitors. The ESR is another important parameter. The ESR will increase with temperature but low ESR capacitors are often larger and more costly. In general, Tantalum capacitors offer lower ESR than aluminum electrolytic, but new low ESR aluminum electrolytic capacitors are now available from several manufacturers. Usually a bench test is sufficient to determine the minimum capacitance required for a particular application. After taking thermal characteristics and tolerance into account, the minimum capacitance value should be approximately two times this value. The recommended minimum capacitance for the TK112xx is 3.3 F. Please note that linear regulators with a low dropout voltage have high internal loop gains which requires care in guarding against oscillation caused by insufficient decoupling capacitance. The use of high quality decoupling capacitors suited for your application will guarantee proper operation of the circuit. NOISE BYPASS CAPACITOR SECTION The noise bypass capacitor (CP) should be connected as close as possible to pin 3 and ground. The recommended value for CP is 0.01 F. The noise bypass terminal has a high impedance and care should be taken if the noise bypass capacitor is not used. This terminal is susceptible to external noise and oscillation can occur when CP is not used and the solder pad for this pin is made too large.
Dpd
6 4 5
25
50
75 T (C)
150
Procedure: 1.) 2.) 3.) 4.) 5.) Find PD PD1 is taken to be PD X (0.8 ~ 0.9) Plot PD1 against 25 C Connect PD1 to the point corresponding to the 150 C with a straight line. In design, take a vertical line from the maximum operating temperature (e.g. 75 C) to the derating curve. Read off the value of PD against the point at which the vertical line intersects the derating curve. This is taken as the maximum power dissipation, DPD.
6.)
The maximum operating current is IO X (DPD/(VIN(MAX) VO).
Page 18
1-3-96
January, 1996 TOKO, Inc.
TK112xx
APPLICATION INFORMATION
1.) Disabling the control pin Connect control terminal to VIN through a resistor (R). Higher resistance values are good for reducing quiescent current but this can cause the regulator to shut down at lower input voltages. See Figure A.
V V
IN O
4.) Parallel connection for ON/OFF control
VIN VIN Cont VIN 11230
+
VO 11250 GND VO 3V GND VO 11220 2V GND
+ + +
5V
6
5
4
+ 1 F R
+ 10 F
0.1 F
RS Cont VIN
1
2
3 C = 10 nF
P
0.1 F + On/Off
Cont
0 R 300 k
Figure A 2.) Using the control function Turn on the regulator by setting the control pin voltage to 2.4 V or higher. Turn off the regulator by pulling the control pin below 0.6 V. The regulator can also be controlled directly from a TTL or CMOS device. See Figure B.
V
IN
To reduce IC power dissipation, connect a resistor, RS, in series with VIN for the lower output voltage devices. This will prevent thermal shutdown due to excessive power dissipation. 5.) Constant current load
VIN + VO + R
V 6 5 4
112XX
Cont GND
O
+
ON/OFF
+ 1 F 1 R 2 3 C = 10 nF
P
+ 10 F
Figure B 3.) Microprocessor/Logic Control
VIN Microprocessor Cont + VO
When there is a large ouput current, the quiescent current also increases, and the difference becomes larger. When using the ON/OFF control, the terminal voltage should be set 2.4 V higher than the GND terminal of the IC. When the ON/OFF control is not being used, connect it to VIN.
112XX
GND +
The Input and Control current in the off mode are less than 200 pA. January, 1996 TOKO, Inc.
1-3-96
Page 19
TK112xx
APPLICATION INFORMATION (CONT.)
6.) Heat dissipation Make the copper pattern as large as possible to provide good heat dissipation (pin 5 is the heatsink). Maximum power dissipation = 400 mW (When mounted as recommended) See Figure C.
+
+
GND
Figure C 7.) Handling molded resin packages All plastic molded packages absorb some moisture from the air. If moisture absorption occurs prior to soldering the devise into the printed circuit board, increased separation of the lead from the plastic molding may occur, degrading the moisture barrier characteristics of the device. This property of plastic molding compounds should not be overlooked, particularly in the case of very small packages, where the plastic is very thin. In order to preserve the original moisture barrier properties of the package, devices are stored and shipped in moisture proof bags, filled with dry air. The bags should not be opened or damaged prior to the actual use of the devices. If this is unavoidable, the devices should be stored in a low relative humidity environment (40 to 65%) or in an enclosed environment with desiccant.
Page 20
1-3-96
January, 1996 TOKO, Inc.
TK112xx
PACKAGE OUTLINE
SOT23L
6
5
4
0.6
Marking Information
1.0
Marking Information
Orientation Mark
1 2 3 +0.1
0.4 -0.05
e e
0.1
M
e
0.95
0.95
0.95
e
0.95
11227 11230 11232 11235 11240 11245 11247 11250
P2 P3 P3 P3 P4 P4 P4 P5
Recommended Mount Pad 3.4
0.2
2.2
0.3
0.2
+0.15 -0
1.25
1.2
0.2
e1
3.2
0.05
+0.1 -0.05
0.15
0.05
0.15
3.3
0.3
(Pin 2 and pin 5 should be grounded for heat dissipation)
Unit:mm
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.
YOUR LOCAL REPRESENTATIVE IS:
TOKO America, Inc. 1250 Feehanville Dr. Mt. Prospect, ILL 60056 Tel: 1(800) PIK-TOKO Fax: 1(847) 699-1194
January, 1996 TOKO, Inc.
(c) 1993 Toko America, Inc. All Rights Reserved
30
0.4
Max
1-3-96
Page 21
Printed in U.S.A.
IC-114-TK112


▲Up To Search▲   

 
Price & Availability of TK11230MBX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X